Tutorial 5 - T5
Sunday Afternoon, Sep 2, 2:00PM - 5:30PM

Information Theory of Deep Learning: What do the Layers of Deep Neural Networks Represent?

Naftali Tishby - Hebrew University of Jerusalem
Information Theory of Deep Learning: What do the Layers of Deep Neural Networks Represent?

In this tutorial I will present a novel comprehensive theory of large scale learning with Deep Neural Networks, based on the correspondence between Deep Learning and the Information Bottleneck framework. The new theory has the following components: (1) rethinking Learning theory; I will prove a new generalization bound, the input-compression bound, which shows that compression of the representation of input variable is far more important for good generalization than the dimension of the network hypothesis class, an ill-defined notion for deep learning. (2) I will prove that for large scale Deep Neural Networks the mutual information on the input and the output variables, for the last hidden layer, provide a complete characterization of the sample complexity and accuracy of the network. This makes the information Bottleneck bound for the problem as the optimal trade-off between sample complexity and accuracy with ANY learning algorithm. (3) I will show how Stochastic Gradient Descent, as used in Deep Learning, achieves this optimal bound. In that sense, Deep Learning is a method for solving the Information Bottleneck problem for large scale supervised learning problems. The theory provides a new computational understanding of the benefit of the hidden layers and gives concrete predictions for the structure of the layers of Deep Neural Networks and their design principles. These turn out to depend solely on the joint distribution of the input and output and on the sample size.

Based partly on joint works with Ravid Shwartz-Ziv, Noga Zaslavsky, and Amichai Painsky.

Naftali Tishby is a professor of Computer Science, and the incumbent of the Ruth and Stan Flinkman Chair for Brain Research at the Edmond and Lily Safra Center for Brain Science (ELSC) at the Hebrew University of Jerusalem. He is one of the leaders in machine learning research and computational neuroscience in Israel, and his numerous former students serve in key academic and industrial research positions all over the world. Tishby was the founding chair of the new computer-engineering program, and a director of the Leibnitz Center for Research in Computer Science at Hebrew University. Tishby received his PhD in theoretical physics from Hebrew University in 1985 and was a research staff member at MIT and Bell Labs from 1985 to 1991. Tishby has been a visiting professor at Princeton NECI, the University of Pennsylvania, UCSB, and IBM Research.
The Information Theory of Deep Learning: What do the layers represent?

Naftali Tishby

InterSpeech, Hyderabad, September 2018
School of Engineering and Computer Science
The Edmond & Lily Safra Center for Brain Sciences
Hebrew University, Jerusalem, Israel

The Deep Learning revolution
Mimic Biology- Brain like Neurons

Activation function (more on this later)

\[y = \sigma(w \cdot x - w_0) = \frac{1}{1 + \exp(-w \cdot x + w_0)} \]

Simple Neural Networks

input layer

hidden layer 1 hidden layer 2

output layer
Deep Learning: Neural-Nets strike back

1970: NN discredited (Minsky & Papert)
1986: Backpropagation (Humeinart, Hinton & Williams)
1995: SVM (Vapnik)
2009: Deep Learning (Hinton)

1943: NN invented (McCulloch & Pitts)

Model Size: 10B parameters
Used by: Yahoo, Google, Microsoft, Baidu, IBM, Scyler

We begin to obtain new theoretical understanding...

We combine 3 different ingredients:

→ **Rethinking Statistical Learning Theory**
 - Worse case PAC bounds → TYPICAL data dependent model free bounds...
 - From expressivity/Hypothesis class → Input Compression bounds

→ **Information Theory** (statistical mechanics...)
 - Large scale learning – Typical input patterns
 - → Concentration of the Mutual Information values
 - → Huge parameter space - exponentially many optimal solutions

→ **Stochastic dynamics of the training process**
 - Convergence of SGD to locally-Gibbs (Max Entropy) weight distribution
 - → The mechanism of representation compression in Deep Learning
 - → Convergence times – explains the benefit of the hidden layers
The match between DL and the Information Bottleneck

Main results:

• **Optimality:** The layers converge to the [finite-sample] IB bound
 – DL can achieve optimal sample complexity-accuracy trade-off
 – Through the diffusion/noisy phase of the Stochastic Gradient Descent optimization
 – Which compresses the representation by "forgetting" irrelevant details

• **Benefit of the Hidden Layers**
 – The benefit is mostly computational – boosting the compression!
 – The location of the optimal layers is determined by the problem

• **Interpretability**
 – Full layers can have clear – problem specific - meaning, NOT single neurons (in general)!

• **Design principles**
 – DL is good for stochastic, compressible rules.
 – Layers final position is related to critical points of the Information Bottleneck

Known issues & reservations

Objections to the theory:

• **Information estimation** [requires quantization or noise, not scalable? …]
 – Not needed for training, only as a tool for understating!
 – Binning is done with the actual known resolution. It should not affect network performance.
 – Requires finite precision or quantization – **CORRECT**!
 – Mutual information values concentrate & become MORE stable the larger the problem!

• **Input Compression/Information loss not necessary** [ResNets, RevNets,i-RevNets,…]
 – Compression comes from unit saturation, not seen with ReLU’s (Saxe 2018) – **WRONG**!
 – Indeed, good generalization can be achieved without apparent layer compression.
 – Similar to the classical physics paradox of reversible microscopic laws & entropy increase…
 – No "forgetting" of non-informative features (really?)

• **Stochastic Gradients not needed** [no convergence to local weight Gibbs distribution]
 – Good generalization achieved without stochastic gradients in INFINITE TIMES! How?
 – Convergence to Gibbs (MaxEnt) distribution is only local (in each layer).
 – The benefits of the stochasticity is dynamical (computational), but also in saving training data!
 – There is important INFORMATION in the mini-batch fluctuations!

• **Is the IB bound relevant?**
 – It actually gives concrete predictions and interpretation of the layers & weights.
 – May explain biological neural network organization... our ultimate motivation.
Deep Neural Nets and Information Theory ??

Some Information Theory basics

- The KL-distribution divergence:

 \[D[p(x) \| q(x)] = \sum_x p(x) \log \frac{p(x)}{q(x)} \geq 0 \]

 for any two distributions \(p(x) \) & \(q(x) \) over \(X \):

- The Mutual Information: Type equation here.

 \[I(X;Y) = D[p(x,y) \| p(x)p(y)] = D[p(x \| y)p(y)] = D[p(y \| x)p(x)] = H(X) - H(X \| Y) \]

 for any two random variables, \(X \), \(Y \):

- Data Processing Inequality (DPI) & Invariance:

 for any Markov chain: \(X \rightarrow Y \rightarrow Z \):

 \[I(X;Y) \geq I(X;Z) \]

 Reparametrisation Invariance, for invertible \(\phi, \psi \):

 \[I(X;Y) = I(\phi(X);\psi(Y)) \]
What do the DNN Layers represent?

- A Markov chain of topologically distinct [soft] partitions of the input variable X.
- Successive Refinement of Relevant Information
- Individual neurons can be easily “scrambled” within each layer

Data Processing Inequalities:

\[H(X) \geq I(X; h_1) \geq I(X; h_{i-1}) \geq I(X; h_{i+2}) \geq \ldots \]

\[I(X; Y) \geq I(h_i; Y) \geq I(h_{i+1}; Y) \geq I(h_{i+2}; Y) \geq \ldots \]

Each layer is characterized by its Encoder & Decoder Information

Theorem (Information Plane):
For large typical \(X \), the sample complexity of a DNN is completely determined by the encoder mutual information, \(I(X; T) \), of the last hidden layer; the accuracy (generalization error) is determined by the decoder information, \(I(T; Y) \), of the last hidden layer.

The complexity of the problem shifts from the decoder to the encoder, across the layers...
100 DNN Layers in Info-Plane without averaging

- Only 2 numbers per layer matter!
- Is this the general picture?
- Why do the MI values concentrate?
- What do they mean?
- What governs their dynamics?

Inside Deep Learning

New experiments reveal how deep neural networks evolve as they learn.
Learning From Experience
Deep neural networks learn by adjusting the strengths of their connections to better convey input signals through multiple layers to neurons associated with the right general concepts.

Input: Image broken into pixels

Layer 1: Pixel values detected
Layer 2: Edges identified
Layer 3: Combinations of edges identified
Layer 4: Features identified
Layer 5: Combinations of features identified

Output: “Dog”

When data is fed into a network, each artificial neuron that fires (labeled “1”) transmits signals to certain neurons in the next layer, which are likely to fire if multiple signals are received. The process filters out noise and retains only the most relevant features.

Inside Deep Learning
New experiments reveal how deep neural networks evolve as they learn.

The role of stochasticity:
How do we measure Mutual Information?

- The representation invariance of the mutual information raises an interesting question.

- Obviously, the computational complexity of learning is not representation invariant (think about learning from encrypted patterns). Thus, Information measures can’t tell the whole story.

- Our experiments crucially depends on how we estimate information. We consider 3 types of estimations: (1) binning the variables. (2) adding noise / stochasticity (3) parametric approximations. In our experiments we quantized/bin the neuronal output values.

- All assume compressibility/refineability of the variables. They are not robust to arbitrary invertible transformations!

- The assertion that the layers are invertible transformations of the input is NOT robust to small noise and misleading. Binning or assuming stochastic mapping is essential for our information theoretic approach.

- Moreover, the IB is trivial (uninteresting) for completely deterministic rules! I argue that our theory predicts that without additional structural information on the patterns, DL can’t work for completely deterministic rules, as they can’t be distinguished from random (fully mixing) rules!
Rethinking Learning Theory

“Old” Generalization bounds:

\[\varepsilon^2 < \frac{\log |H_\varepsilon| + \log \sqrt{\delta}}{2m} \]

- \(\varepsilon\) - generalization error
- \(\delta\) - confidence
- \(m\) - number of training examples
- \(H_\varepsilon\) - \(\varepsilon\)-cover of the Hypothesis class

Typically we assume: \(|H_\varepsilon| \sim \left(\frac{1}{\varepsilon}\right)^d\)

- \(d\) - the class (VC,...) dimension

... Don't work for Deep Learning!
Higher expressivity - worse bound!

New: Input Compression bound:

\[|H_\varepsilon| \sim 2^{k|T|} \rightarrow 2^{rel} \]

- \(T\) - \(\varepsilon\)-partition of the input variable \(X\) with respect to the distortion:

\[d_{\text{in}}(x, t) = D[p(y | x) \parallel p(y | t)] \]

\[\geq \sqrt{\frac{1}{2\delta^2}} \| p(y | x) - p(y | t) \|_2^2 \]

When \(p(y | t) = \sum_x p(y | x)p(x | t)\)

\[\langle d_{\text{in}} \rangle = I(X; Y) - I(T; Y) \]

Small IB distortion, or high \(I(T; Y)\),
\[\Rightarrow \text{small [typical] generalization error} \]

Rethinking Learning Theory...

What are “large typical” patterns?

Typicality emerges when the underlying pattern distribution can be asymptotically expressed as a long product of localized conditional probabilities.

E.g. Markov Random Fields, Hidden Markov Models, pairwise interaction Hamiltonians in physics, all common Graphical models, etc.

In our case it includes images, speech & text, long molecular sequences, signals generated by localized dynamic systems, etc.

Then, the Shannon-McMillen limit for the entropy exists:

\[\lim_{n \to \infty} -\frac{1}{n} \log p(x_1, ..., x_n) = H(X) \]

And almost all patterns are typical with probability:

\[p(x_1, ..., x_n) \approx 2^{-nH(X)} \]

And also for large enough typical partitions, \(T\):

\[p(x_1, ..., x_n | T) = 2^{-nH(X|T)} \]
Concentration of Mutual Information

\[I(X;T) = \left(\log \frac{p(x|t)}{p(x)} \right)_{x,T} = \left(\log \prod_i \frac{p(x_i|Pa(x_i),t)}{p(x_i|Pa(x_i))} \right)_{x,T} = \left(\sum_i \log \frac{p(x_i|Pa(x_i),t)}{p(x_i|Pa(x_i))} \right)_{x,T} \]

\[I(T;Y) = \left(\log \sum_x p(y|x)p(x|t) \right)_{y,T} = \left(\log \left[\sum_x p(y|x) \prod_i p(x_i|Pa(x_i),t) \right] \right)_{y,T} \]

Proposition:
1. Both \(I(T;X) \) and \(I(T;Y) \), as defined, concentrate, uniformly, under the partition typicality assumption.
2. Both can be estimated uniformly well (over the partitions) from a sample of \(p(X,Y) \).

Rethinking Learning Theory

“Old” Generalization bounds:

\[\varepsilon^2 < \frac{\log |H_\varepsilon| + \log \frac{1}{\delta}}{2m} \]

\(\varepsilon \) - generalization error
\(\delta \) - confidence
\(m \) - number of training examples
\(H_\varepsilon \) - \(\varepsilon \)-cover of the Hypothesis class

Typically we assume: \(|H_\varepsilon| \sim \left(\frac{1}{\varepsilon} \right)^d \)

\(d \) - the class (VC,...) dimension

... Don't work for Deep Learning!
Higher expressivity - worse bound!

New: Input Compression bound:

\[|H_\varepsilon| \sim 2^{|X|} \rightarrow 2^{T_\varepsilon} \]

\(T_\varepsilon \) - \(\varepsilon \)-partition of the input variable \(X \)

Information Theory: \(|T_\varepsilon| \sim 2^{I(T_\varepsilon;X)} \)

\[\varepsilon^2 < \frac{2^{I(T_\varepsilon;X)} + \log \frac{1}{\delta}}{2m} \]

... K bits of compression of X are like a factor of \(2^K \) training examples!
The Information Bottleneck (IB) Method
(Tishby, Pereira, Bialek, 1999)

- The **Information Bottleneck** method was born out of the **Speech Recognition problem**:
 - What are the **simplest** (efficient) **representations** of the (high entropy) **Acoustic Signal** that yield good prediction of the (low entropy) **phonemes**?

- The idea was to extract (approximate) **Minimal-Sufficient Statistics** – simplest features – of the complex signal (sound), that are informative for the simpler one (text).

- This was cast into a simple looking **Information Theoretic tradeoff between compression and accuracy**.

- It turned out to be the **general principle of adaptation** of encoders to decoders in biology and elsewhere!

The Information Bottleneck (IB) Method
(Tishby, Pereira, Bialek, 1999)

1. **Approximate Minimal Sufficient Statistics**:

 Markov chain: \(Y \rightarrow X \rightarrow S(X) \rightarrow \hat{X} \)

 \[\hat{X} = \arg \min_{\hat{x}} I(S(X); \hat{x}) - I(X; \hat{x}) \]

 Relaxation - given \(p(X, Y) \):

 \[\hat{X} = \arg \min_{\hat{x}} I(\hat{x}; X) - \beta I(\hat{x}; Y), \quad \beta > 0 \]

 (Shamir, Sabato,T., TCS 2010)
The Information Bottleneck optimality bound
(Tishby, Pereira, Bialek, 1999)

The IB bound optimality equations:

\[
\min_{p(\hat{x}|x),y \rightarrow x \rightarrow \hat{x}} I(\hat{x};X) - \beta I(\hat{x};Y), \quad \beta > 0
\]

\[
p(x | \hat{x}) = \frac{p(x)}{Z(x,\beta)} \exp(-\beta D[p(y|x)\|p(y|\hat{x})])
\]

\[
Z(x,\beta) = \sum_{\hat{x}} p(\hat{x}) \exp(-\beta D[p(y|x)\|p(y|\hat{x})])
\]

\[
p(\hat{x}) = \sum_{x} p(\hat{x} | x) p(x)
\]

\[
p(y | \hat{x}) = \sum_{x} p(y | x) p(x | \hat{x})
\]

Solved by Arimoto-Blahut like iterations,
but with possibly sub-optimal solutions, bifurcations (1),

Rethinking Learning Theory...

... but we need to guarantee the label homogeneity of the ϵ-partition with finite samples. Without additional structural information on the inputs (stability, robustness, topology), we must use the stochasticity of the rule and the IB distortion measure:

The ϵ-partition, T_ϵ, is with the empirical distortion

\[
d_{IB}(x,t) = D[\hat{P}_{emp}(y|x)\|p(y|t)]
\]

as $\langle d_{IB} \rangle_{emp} = I(X;Y) - \hat{I}_{emp}(T;Y)$

with a finite sample there is another information loss:

\[
I(T;Y) \leq \hat{I}_{emp}(T;Y) + O\left(\sqrt{\frac{2I(T;X)}{m}}\right)
\]

both should remain small for good generalization!
Layers of optimal DNN converge to [a successively refineable approximation of] the optimal finite-sample IB limit information-curve.

Layers must be in "different topological phases" of the IB solutions.

The DNN encoder & decoder for each layer satisfy the IB self-consistent equations.
Layers paths with training/generalization error

Information Plane - Epoch number - 29

Precision as function of the epochs
Accuracy

Precision

Epochs

Normalized Mean and STD

High SNR phase: memorization

Low SNR phase: forgetting

Epochs
In the noisy phase the weights diffuse and grow like $O(\sqrt{t})$.

Gradients SNR, Diffusion & Compression – all layers
The role of the batch size

Break
Relevant and Irrelevant local dimensions

- The covariance matrix of the gradients is very narrow in the relevant local dimensions and very wide in the many other dimensions.

\[
W^k \rightarrow W_{acea}^k + \delta W^k \\
T^{k+1} = \sigma(W_{acea}^k T^k + \xi^k) \\
\xi^k = \delta W^k T^k \sim N(0, \text{cov}(\delta W^k)) \\
I(T_k; T_{k+1}) \leq \frac{1}{2} \log \left(1 + \frac{||W_{acea}^k||}{||\delta W||} \right)
\]

Is it the general picture? Yes!

6 layer committee machine
... and for “Real-world” problems? Yes!

MNIST handwriting digit recognition with RelU’s a CNN architecture

Is it the general picture? Yes!

CIFAR 10 object recognition task
Non decreasing layer widths – notice last hidden layer
Local weights Gibbs and optimal IB representations

Noisy relaxation (SGD) on training error (with \(m \) examples):

\[
\frac{\partial W_k}{\partial t} = -\nabla E(W_k | X^{(m)}) + \beta_k^{-1} \xi(t), \quad \text{layer } k, \quad \xi \sim N(0,1), \quad \beta_k - \text{decoder } k - \text{layer noise}
\]

\[\Rightarrow \text{Maximum Entropy: } P_{Gibbs}(W_k | X^{(m)}) \propto \exp(-\beta_k E(W_k | X^{(m)})) \quad \text{locally!}\]

with additive [cross-entropy] training error and i.i.d. samples, using Bayes rule with the quenched \(W \):

\[
P_{Gibbs}(X | W_k) = P_{Gibbs}(X | T_k) \propto \exp(-\beta_k D_{KL}[p(Y | X) \parallel p(Y | T)])
\]

This is precisely the IB optimal encoder with \(\tilde{\beta}_k \) - the encoder \(k \) - layer noise

Since \(I(X; T_k) = H(X) - H(X | T_k) \), Max Entropy of the weights \(\Rightarrow \text{Min } I(X; T_k) \)

thus SGD converges, layer by layer, to a maximally compressed representation, which is a SUCCESSIVELY REFINEABLE APPROXIMATION of the optimal IB bound!

The benefit of the hidden layers

More layers take much FEWER training epochs for good generalization.

The optimization time depend super-linearly (exponentially?) on the compressed information, delta \(I_x \), for each layer.
Relaxation times and the benefit of the hidden layers

Noisy relaxation (SGD): \[\frac{\partial W_k}{\partial t} = -\nabla E(W_k) + \beta_k^{-1} \xi(t), \text{ layer } k, \quad \xi \sim N(0,1) \]

⇒ Maximum Entropy (via Focker-Planck): \[P_{\text{Gibbs}}(W_k) \propto \exp\left(-\beta_k E(W_k)\right), \]

Relaxation time for non-strongly convex error: \[\Delta t_k \sim \exp(\Delta S_k) \]

Denote the layer compression be: \[\Delta S_k = I(X; T_k) - I(X; T_{k-1}) \]

Since \[\exp\left(\sum_k \Delta S_k\right) \gg \sum_k \exp(\Delta S_k) > \max_k \exp(\Delta S_k) \Rightarrow \]

Exponential boost in the relaxation time with K layers!

Equilibration of Information Flow through the layers

The Information Capacity between two layers is bounded by the Gaussian capacity:

\[C_c(W_k) = \frac{1}{2} \log \left(1 + \frac{P_k}{N_k} \right) = \frac{1}{2} \log (1 + \text{SNR}_k) \]

The stochastic relaxation decreases the SNR of the irrelevant channels

⇒ In optimized DNN only the relevant information \(I(X; Y) \) flows through the network

⇒ \(\text{SNR}_k = \text{const.} \) we see this in the simulations.

This can determine the final layers locations in the Information Plane...

Unless the stochastic relaxation stops through critical slowing down near phase transitions!
- Fitting larger training data require more information in the hidden layers.

- It is the mutual-information of the last hidden layer, which determines generalization (unlike standard hypothesis class bounds).
Second order phase transitions on the IB curve

\[\Delta I_x = \beta \Delta I_y \]

Information loss in cluster split
The IB bifurcation (phase-transitions) points

The IB bifurcation points can be found as follows:

\[p_\beta(x | \hat{x}) = \frac{p(x)}{Z(x, \beta)} \exp(-\beta D[p(y | x) \parallel p_\beta(y | \hat{x})]) \]

or \[\ln p_\beta(x | \hat{x}) = \ln \frac{p(x)}{Z(x, \beta)} - \beta D[p(y | x) \parallel p_\beta(y | \hat{x})] \]

then:

\[\frac{\partial \ln p_\beta(x | \hat{x})}{\partial \hat{x}} = \beta \sum_y p(y | x) \frac{\partial \ln p_\beta(y | \hat{x})}{\partial \hat{x}} \]

similarly:

\[p_\beta(y | \hat{x}) = \sum_x p(y | x) p_\beta(x | \hat{x}) \]

\[\frac{\partial \ln p_\beta(y | \hat{x})}{\partial \hat{x}} = \frac{1}{p_\beta(y | \hat{x})} \sum_x p(y | x) p_\beta(x | \hat{x}) \frac{\partial \ln p_\beta(x | \hat{x})}{\partial \hat{x}} \]

Defining the matrices:

\[C_{xx}(\hat{x}, \beta) = \sum_y \frac{p(y | x)}{p_\beta(y | \hat{x})} p_\beta(x' | \hat{x}) p(y | x') \]

\[C_{yy}(\hat{x}, \beta) = \sum_x \frac{p(y | x)}{p_\beta(y | \hat{x})} p_\beta(x | \hat{x}) p(y' | x) \]

these equations can be combined into two (non-linear) eigenvalue problems:

\[\left[I - \beta C_{xx}(\hat{x}, \beta) \right] \frac{\partial \ln p_\beta(x' | \hat{x})}{\partial \hat{x}} = 0 \]

\[\left[I - \beta C_{yy}(\hat{x}, \beta) \right] \frac{\partial \ln p_\beta(y' | \hat{x})}{\partial \hat{x}} = 0 \]

These eigenvalue problems have non-trivial solutions (eigenvectors) only at the critical bifurcation points (second order phase transitions).
Bifurcation diagrams in symmetric rule: layers diffusion slows down at phase transitions

Each layer encodes the information in the IB bifurcation from the previous layer.

\[W^k \approx \sum_{splits} \frac{\partial \log p(x|t_s^{k-1})}{\partial t_s^{k-1}} \]

Summary

- The Information Plane provides a unique visualization of DL
 - Most of the learning time goes to compression
 - Layers are learnt bottom up – and "help" each other
 - The layers converge to special (critical?) points on the IB bound

- The advantage of the layers is mostly computational
 - Relaxation times are super-linear (exponential?) in the Entropy gap
 - Hidden layers provide intermediate steps and boost convergence time
 - Hidden layers help in avoiding critical slowing down

- Further directions
 - Exactly solvable DNN models (through symmetry & group theory)
 - New/better learning algorithms & design principles
 - Predictions on the organization of biological layered networks
Thank you!